16 research outputs found

    Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation

    Get PDF
    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN)

    Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Get PDF
    Superconducting circuits comprising SNSPDs placed in parallel鈥攕uperconducting nanowire avalanche photodetectors, or SNAPs鈥攈ave previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 渭m with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002

    Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    Get PDF
    We report on a systematic experimental study of the heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single-mode optical fibers. We define the correlated-mode coupling efficiency, an inherent source efficiency, and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer-controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting nanowire single-photon detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory, and we demonstrated a correlated-mode coupling efficiency of 97% 卤 2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. It is expected that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contract FA8721-05-C-0002

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on eighteen research projects.Defense Advanced Research Projects Agency/MIT Lincoln Laboratory Contract MDA972-92-J-1038Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715MIT Center for Material Science and EngineeringNational Center for Integrated Photonics Technology Contract DMR 94-00334National Center for Integrated Photonics TechnologyU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717National Institutes of Health Grant 9-R01-EY11289MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents on Section 3 and reports on nineteen research projects.Defense Advanced Research Projects Agency Grant F49620-96-0126Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715Defense Advanced Research Projects Agency/National Center for Integrated Photonics TechnologyMultidisciplinary Research InitiativeU.S. Air Force - Office of Scientific ResearchNational Science Foundation/MRSECU.S. Navy - Office of Naval Research (MFEL) Contract N00014-91-J-1956National Institutes of Health Grant R01-EY11289U.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-0717Defense Advanced Research Projects Agency Contract N66001-96-C-863

    Review of superconducting nanowire single-photon detector system design options and demonstrated performance

    No full text
    We describe a number of methods that have been pursued to develop superconducting nanowire single-photon detectors (SNSPDs) with attractive overall performance, including three systems that operate with >70% system detection efficiency and high maximum counting rates at wavelengths near 1550 nm. The advantages and tradeoffs of various approaches to efficient optical coupling, electrical readout, and SNSPD design are described and contrasted. Optical interfaces to the detectors have been based on fiber coupling, either directly to the detector or through the substrate, using both single-mode and multimode fibers with different approaches to alignment. Recent advances in electrical interfaces have focused on the challenges of scalability and ensuring stable detector operation at high count rates. Prospects for further advances in these and other methods are also described, which may enable larger arrays and higher-performance SNSPD systems in the future. Finally, the use of some of these techniques to develop fully packaged SNSPD systems will be described and the performance available from these recently developed systems will be reviewed.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contract FA8721-05-C-0002)United States. National Aeronautics and Space Administratio

    Operation and Optimization of Silicon-Diode-Based Optical Modulators

    No full text
    An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device ideal for comparing the two modes of operation. In reverse bias, the device has a V蟺L [V subscript pi L] of 4.0 V路cm and a bandwidth of 26 GHz. In forward bias, the device is very sensitive, a V蟺L [V subscript pi L] as low as 0.0025 V路cm has been achieved, but the bandwidth is only 100 MHz. A new geometry for a reverse-bias device is proposed, and it is predicted to achieve a V蟺L [V subscript pi L] of 0.5 V路cm.United States. Defense Advanced Research Projects Agency. Electronic and Photonic Integrated Circuit (EPIC) Program (Air Force Contract FA8721-05-C-0002) (Contract W911NF-04-1-0431)National Science Foundation (U.S.)Ida M. Green Fellowshi
    corecore